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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: positions momenta
A A

f

f \ \
H(q,955-++s0qns P1sP2s+ - +sPN)

The time evolution of an orbit (trajectory) with initial
condition

P(0)=(q1(0)9 qZ(O)a---an(O)a p1(0)9 pz(O)a---apN(O))

is governed by the Hamilton’s equations of motion
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Variational Equations

We use the notation X = (q,qys:--sqnsP1sPs+++sPn) - The
deviation vector from a given orbit is denoted by

v = (dx,, dx,,..., dx )T, with n=2N

The time evolution of v is given by

dv

—_ = _J . P -V
dt

where

2
Tl 0y ) T aex, T
N N X;0X;
Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93
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Symplectic Maps
Consider an n-dimensional symplectic map T. In this case

we have discrete time.

The evolution of an orbit with initial condition

P(0)=(x,(0), x,(0),...,x,(0))
is governed by the equations of map T

P(i+1)=T P(i) , i=0,1,2,...

The evolution of an initial deviation vector
v(0) = (dx,(0), dx,(0),..., dx_(0))
is given by the corresponding tangent map

v(i+1)—g—lT) v(i) ,i=0,1,2,...
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Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given
orbit characterize the mean exponential rate of divergence
of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with
initial condition x(0) and an initial deviation vector from
it v(0). Then the mean exponential rate of divergence is:

o(x(0),+(0)) = lim ' 1n 1Ol
=t v
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Maximal Lyapunov Exponent
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Figure 5.7. Behavior of ¢ , at the intermediate energy E = 0.125 for initial points
taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin
et al., 1976).

If we start with more than one linearly independent
deviation vectors they will align to the direction defined by
the largest Lyapunov exponent.
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Definition of Smaller
Alignment Index (SALI)

Consider the n-dimensional phase space of a conservative dynamical
system (symplectic map or Hamiltonian flow).

An orbit in that space with initial condition :
P(0)=(x,(0), x,(0),...,x,(0))

and a deviation vector
v(0)=(dx,(0), dx,(0),..., dx_(0))

The evolution in time (in maps the time is discrete and is equal to the
number N of the iterations) of a deviation vector is defined by:

the variational equations (for Hamiltonian flows) and
*the equations of the tangent map (for mappings)
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Definition of SALI

We follow the evolution in time of two different initial
deviation vectors (v,(0), v,(0)), and define SALI (Skokos,
2001, J. Phys. A, 34, 10029) as:

SALI(t) = min {

-v, 0}

where
01 ()= Y0
[vi
When the two vectors become collinear
SALI(t) — 0
H. Skokos Focus Workshop on Few Body Dynamics 9

MPIPKS, Dresden, 1 July 2010



Behavior of SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to v, (1)
coincide with the direction defined
by the maximal Lyapunov exponent. /..~

A

v, (D)

. SALI(t
eV, (t) ©

Trajectory
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Behavior of SALI for chaotic motion

We test the validity of the approximation| SALIxe-¢1-2t{Skokos et al.,

2004, J. Phys. A, 37, 6269) for a chaotic orbit of the 3D Hamiltonian

3

.
H= Z‘ > (a; +p})+4iq, +qiq,

with =1, ®,=1.4142, ©,=1.7321, H=0.09
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Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial
deviation vectors become tangent to the torus, generally

having different directions. A
v,(0)

¥,(0)

Nl
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Applications — Hénon-Heiles system

For E=1/8 we consider the orbits with initial conditions:
Ordered orbit, x=0, y=0.55, p,=0.2417, py=0

Chaotic orbit, x=0, y=-0.016, p.=0.49974, py=0

Chaotic orbit, x=0, y=-0.01344, p =0.49982, p =0
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Applications — Hénon-Heiles system
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Applications — Hénon-Heiles system
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Applications — 4D ma

X, = x,+x,
X, = X,-vsin(x, +x,)-p[l-cos(x, +x, +x, +x,)]
, (mod 2m)
X; = X;+Xx,
X, = Xx,-ksin(x;+x,)-p[l-cos(x, +x,+x,+x,)]

For v=0.5, k=0.1, u=0.1 we consider the orbits:
ordered orbit C with initial conditions x,=0.5, x,=0, X,=0.5, x,=0.

chaotic orbit D with initial conditions x,=3, Xx,=0, X,=0.5, X,=0.

logN
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Applications — 4D Accelerator map

We consider the 4D symplectic map

X) cos®, -sinm, 0 0 X,
x, | _| sinm, cos®, 0 0 Xt X] -X;
X, ) 0 cos®, -sinm, X,
X/, 0 0 sinw, cosw, X, - 2X,X,

describing the instantaneous sextupole ‘kicks’ experienced by a particle as it
passes through an accelerator (Turchetti & Scandale 1991, Bountis &
Tompaidis 1991, Vrahatis et al. 1996, 1997).

X, and x; are the particle’s deflections from the ideal circular orbit, in the
horizontal and vertical directions respectively.

X, and x, are the associated momenta
®;, , are related to the accelerator’s tunes q,, q, by
©,=2nq,, ©,=27q,
Our problem is to estimate the region of stability of the particle’s

motion, the so-called dynamic aperture of the beam (Bountis &
Skokos, 2006, Nucl. Inst Meth. Phys Res. A, 561, 173).
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4D Accelerator map — "Global" study

Regions of different values of the SALI on the subspace
X,(0)=x,(0)=0, after 104 iterations (q,=0.61803 q,=0.4152)
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4D Accelerator map — "Global" study

We consider 1,922,833 orbits by varying all x,, x,, X3, X,
within spherical shells of width 0.01 in a hypersphere of
radius 1. (q,=0.61803 q,=0.4152)

% of orbits

N=10" iterations N=10° iterations

100

100

80

Ordered

80

60 -

60 - @
£
o
(.
40 4 2 40 -
3~
Chaotic
20 - Chaotic 20 SALI<10®
SALI<10°
0 ¥ T T ! T ¥ T ' 0 Y T : T 1 T ? T !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
reII rt-.all
H. Skokos Focus Workshop on Few Body Dynamics 19

MPIPKS, Dresden, 1 July 2010



X, = x, +x,
, . (mod 2m)
X, = X,-vsin(x,+Xx,)

For v=0.5 we consider the orbits:
ordered orbit A with initial conditions x,=2, x,=0.

chaotic orbit B with initial conditions x,=3, x,=0.

logN logN
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Behavior of SALI

2D maps
SALI—0 both for regular and chaotic orbits

following, however, completely different time rates which
allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps
SALI—0 for chaotic orbits

SALI—constant £ 0 for regular orbits
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Questions

Can we generalize SALI so that the new index:

 Can rapidly reveal the nature of chaotic orbits with
6,~X0, (SALIxe!-2t)?

* Depends on several Lyapunov exponents for chaotic
orbits?

* Exhibits power-law decay for regular orbits depending
on the dimensionality of the tangent space of the
reference orbit as for 2D maps?
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Definition of Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.

v, (1)

ro V. (t)

V, =V,
ViV = =

Area =

v,(0)

. max{ [V, - ,[,[¥, + ¥,[}
1 201 "1 2
v,(0) SALI- -
2
P(0)
Trajectory Al‘ea oC SALI
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Definition of GALI

In the case of an N degree of freedom Hamiltonian system or
a 2N symplectic map we follow the evolution of

k deviation vectors with 2<k<2N,

and define (Skokos et al., 2007, Physica D, 231, 30) the
Generalized Alignment Index (GALI) of order Kk :
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Wedge product

We consider as a basis of the 2N-dimensional tangent space of the
Hamiltonian flow the usual set of orthonormal vectors:

¢, =(1,0,0,...,0), &, =(0,1,0,...,0), ..., &, =(0,0,0,...,1)

Then for k deviation vectors we have:

Vi Viir V2 7 Vi ¢
\£ _ Vaa V2 7 Vaon . €,
Vil LY Yie 0 Vian] L€
Vii, Vi, Vi,
A A N Vai,  Vai, 7 Vai |« A A
VAV, A=AV, = Z € A€ A Ae
1<i, <i, <---<i, <2N
Vi, Yki, Vi,
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Computation of GALI

For k deviation vectors:

V1 V11
V2 — V21
_Vk _ _Vkl

V12

V22

Vie

V1 2N

V2 2N

Vk2N_

o>
p—

L] m)
)

e2N

the ‘norm’ of the wedge product is given by:

e

H. Skokos

Vl/\Vz/\---/\Vk”=< Z
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Computation of GALI

From Singular Value Decomposition (SVD) of AT we get:
A'=U-W-V'

where U is a column-orthogonal 2Nxk matrix (U U=I), V! is a kxk
orthogonal matrix (V-V'=I), and W is a diagonal kxk matrix with
positive or zero elements, the so-called singular values. So, we get:

det(A-A")=det(V-W'-U" -U-W-V')=det(V-W-1.-W-V') =
k
det(V-W? . V") =det(V -diag(w;,w;,..w;)- V') =] | w;

Thus, GALI, is computed by:

GALI, = ./det(A-A") = Hw — log(GALI) Zlog
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Behavior of GALI, for chaotic motion

GALI, (2<k<2N) tends exponentially to zero with
exponents that involve the values of the first k largest
Lyapunov exponents 6,, 6,, ..., 6, :

GALIk (t) oC e'[(61 -6, )+(6,-65)*...+(6, -6} )]t

The above relation is valid even if some Lyapunov
exponents are equal, or very close to each other.
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Behavior of GALI, for chaotic motion

2D Hamiltonian (Hénon-Heiles system)
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Behavior of GALI, for chaotic motion

3D system:

H =) 2

3
i=1

(‘l. +P1 )+ q1qz + q1q3

with o,=1, ®,=/2 , ©,:=+/3 , H;=0.09.
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Behavior of GALI, for chaotic motion

N particles Fermi-Pasta-Ulam (FPU) system:
1< |
H= Ezpf + Zl:i(qiﬂ -(; )2 +%(qi+l -(; )4:|
i=1 i=0

with fixed boundary conditions, N=8 and p=1.5.
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Behavior of GALI, for regular motion

If the motion occurs on an s-dimensional torus with s<N then the
behavior of GALI, is given by (Skokos et al., 2008, EPJ-ST, 165, 5):

-

constant if 2<k<s
1
GALI, (t)oc - o= if s<k<2N-s
1 . <
JETEY if 2N-s<k <2N

while in the common case with s=N we have :

(constant if 2<Kk<N
GALI, (t)cq 1

2(k-N
kt( )

if N<k<2N
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Behavior of GALI, for regular motion

3D Hamiltonian
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Behavior of GALI, for regular motion

N=8 FPU system: The unperturbed Hamiltonian (f=0) is written as a
sum of the so-called harmonic energies E.:

1
— 2 22 o __
with:
2 -« . [ kin 2 & ., ( kim , in
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N+15 N+1 N+15 N+1 2(N+1)
0.003 Y T ¥ T ¥ T 'igL ol N JHN TR RN S BT bIA'Ll; T (b)_ o EXN
E1 Ty P\
-5
9
0.002 | - .10
) )

= "<" ?:' -15
i o T o)

0.001 e _g’ 31 -20

Ea 6 | Slope=-§ A
—————— EE_E_ 25 slor;e=12 N
e G o i (98 : slope=-16 GALl"i
0.000 N I i I r 1 N -8 " 1 L 1 L 1 L 1 L 1 " 1 L -30 N 1 N 1 " 1 " i A
0 250000 500000 750000 1000000 25 3.0 35 4.0 4.5 5.0 55 6.0 3.0 35 4.0 45 5.0 55 6.0
t log(t) log(t)
H. Skokos Focus Workshop on Few Body Dynamics 34

MPIPKS, Dresden, 1 July 2010



Global dynamics

* GALI, (practically equivalent to the use of SALI)

* GALI, 3D_Ha_milt0nian )
Chaotic motion: GALI—0 Subspace q;=p;=0, p,20 for t=1000.
(exponential decay) 04
Regular motion:
GALI - constant+0
0.3-
0
-2
Chaotic orbit 1 021
-4 - Regular orbit o
_ 6} i
=
a 8 - i 0.1-
[o)]
2 oL .
12 L .
0.0
14 L | 04 -03 02 -01 0.0 0.1 02 03 04
20 w0 a0 800 1000 log(GALI) [T
t ) 5 4 2 0
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Global dynamics

GALI, with k>N
The index tends to zero both for 2D Hamiltonian (Hénon-Heiles)
regular and chaotic orbits but with Time needed for GALI,<10""

completely different time rates:

Chaotic motion: exponential decay
Regular motion: power law

0 y T : ; T : T
Chaotic orbit — -
-2 Regular orbit —— -

log(GALI,)

16 . 1 L . ] . ] .
0 100 200 300 400 500
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Regular motion on low-dimensional tori

A regular orbit lying on a 2-dimensional torus for the N=8
FPU system.
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Regular motion on low-dimensional tori

A regular orbit lying on a 4-dimensional torus for the N=8

FPU system.
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Log(GALIs)

H. Skokos

Low-dlmensmnal tori - 6D map

X, X,
x, = x,*+ —‘ Lsin(2nx,) -5
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Behavior of GALI,

Chaotic motion:

GALI, —0 exponential decay
GALI (t) oC e'[((’l -6, )+(6,-63)+... (6, -6, )|t
k

Regular motion:

GALI, —constant # 0 or GALI, —0 power law decay

-

constant if 2<k<s
1
tk-s

1
ktz(k'N)

if s<k<2N-s

if 2N-s<k<2N
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Conclusions

* Generalizing the SALI method we define the Generalized ALignment Index of
order k (GALIL) as the volume of the generalized parallelepiped, whose edges are k
unit deviation vectors. GALI, is computed as the product of the singular values of a
matrix (SVD algorithm).

* Behaviour of GALI_:

v Chaotic motion: it tends exponentially to zero with exponents that involve the
values of several Lyapunov exponents.

v Reguler motion: it fluctuates around non-zero values for 2<k<s and goes to
zero for s<k<2N following power-laws, with s being the dimensionality of the
torus.

* GALI, indices :
v' can distinguish rapidly and with certainty between regular and chaotic motion

v" can be used to characterize individual orbits as well as '"chart" chaotic and
regular domains in phase space.

v’ are perfectly suited for studying the global dynamics of multidimentonal
systems

v' can identify regular motion in low—dimensional tori
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